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Abstract-The transient laminar natural convection heat transfer of fluids between two concentric iso- 
thermal spheres is investigated theoretically. The fluid is initially at rest and then the inner wall is subjected 
to a step change of temperature. The stream function/vorticity formulation is employed for the analysis 
because of the symmetry of the problem. The transient behavior of the flow field and its subsequent effect 
on the temperature distribution for different Rayleigh numbers and radius ratios are analyzed by finite 
difference methods. Forward differences are used for the time derivatives and second-order central differ- 
ences for the space derivatives. The alternating direction implicit method is used for solution of the 
discretization equations. The results show that the Rayleigh number and radius ratio have a profound 
influence on the temperature and flow fields. The results of average Nusselt numbers are also compared 

with those of previous experimental and numerical investigations. Excellent agreement is obtained. 

INTRODUCTION 

NATURAL convection heat transfer in the annulus 
between two concentric spheres is an important 
research topic, because this geometry is encountered 
in a wide range of engineering design problems. Exam- 
ples include nuclear reactor design, thermal energy 
storage cells that utilize phase transition, solar energy 
collectors, geophysical fields, and many other prac- 
tical situations. Accurate prediction of steady state 

heat transfer rates and temperature distribution is 
required in these engineering design problems. For 
some engineering applications, such as gyroscopes, 
the prediction of transient temperature distribution 
and heat transfer rate from initial state to steady state 
is very important. Unfortunately, little of the litera- 
ture published in the past two decades investigates 
the transient behavior of laminar natural convection 
occuring in the annuli between two concentric spheres. 

Experimental research on natural convection in 
annuli between two isothermal concentric spheres has 

been described by Bishop et al. [ 1. 21. Scanlan et al. [3]. 
and Yin et al. [4]. Three types of flow patterns in the 
annuli between the concentric spheres were observed 
for various radius ratios, Prandtl numbers, and Ray- 
leigh numbers. These were crescent eddies, kidney- 
shaped flows, and falling-vortices. 

The analytical investigation of natural convection 
in annuli between two isothermal concentric spheres, 
the inner surface being hotter, was initiated by Mack 

and Hardee [5], who developed a regular perturbation 
method to determine the temperature and flow fields. 
The streamlines and isotherms were displayed graphi- 
cally. Local and overall Nusselt numbers were also 
presented and compared with those obtained exper- 

imentally. Later, a finite-difference scheme was used 

by Brown [6], who extended this problem to include 
a much larger range of Prandtl and Grashof numbers. 
Shaughnessy ef al. [7] used the spectral expansions 
technique to solve nonlinear partial differential equa- 
tions that govern the problem of natural convection 
heat transfer between concentric horizontal cylinders 
and concentric spherical annuli. They concluded that 
their methods were valid for a greater range of par- 
ameter values than can be solved by perturbation 

methods. But the range of Rayleigh numbers for 
which accurate solutions can be obtained was very 
limited. Astill et al. [8] solved this problem for Prandtl 
numbers between 0.7 and 5.0 by using the finite- 
difference method. Their results cover a range of 
Ra = 5.0 x IO’-2.0 x IO9 for radius ratios from 1.03 
to 2.0. Other solutions of the problem which deal with 
natural convection in spherical annuli with uniform 
wall temperatures have been presented in refs. [9-l 51. 

All the references cited above have dealt with steady- 
state analyses only. Recent work concerning transient 
behavior in spherical annuli is presented in refs. [16 
191. Ozoe et al. [ 161 and Mochimaru [ 171 studied 
transient natural convection in a spherical/hemi- 
spherical enclosure after a step change in the spherical 
wall temperature experimentally and numerically. 
Fujii et al. [18] obtained a numerical solution of 
full Navier-Stokes and energy equations for two- 
dimensional laminar natural convection in spherical 
annuli between two concentric spheres for large 
radius ratio at Prandtl number of 0.7 and Rayleigh 
number of 100. Later, they extended the problem for 
large Prandtl number, Pr = 0.7-120 [20]. Ozoe et al. 
[ 191 presented a full three-dimensional numerical 
analysis of natural convection in a spherical annuli 
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NOMENCLATURE 

specific heat at constant pressure 
local gravitational acceleration [m s- ‘1 
Grashof number, (.y~ATr,3),%’ 
thermal conductivity of the fluid 
[Win Km’] 

local Nusselt number at inner sphere 
surface, defined by equation (10) 
local Nusselt number at outer sphere 
surface, defined by equation (1 I) 
average Nusselt number at inner sphere 
surface. defined by equation (I 2) 
average Nusselt number at outer sphere 
surface, defined by equation (I 2) 
Prandtl number, V/X 
radial coordinate 
radius of inner sphere 
radius of outer sphere 
dimensionless radial coordinate, r/r, 

ratio of outer and inner radius ratio, r,/r, 

Rayleigh number, (gfiATr,3)j(vcc) 

time [s] 
non-dimensional temperature, 

(T’-T:,)/(T:-T:,) 
temperature 
temperature of inner sphere 
temperature of outer sphere and initial 
state 

u non-dimensional radial velocity, ur,/a 

I.4 radial velocity 
V non-dimensional tangential velocity, 

rr,ja 

I’ tangential velocity. 

Greek symbols 
thermal diffusivity, k/C,p 
thermal expansion coefficient 
temperature difference between spheres, 
T: - T:, 

angular coordinate measured positive 
clockwise from upper vertical line of 
symmetry Q = 0’ 
angular position at vortex center 
kinematic viscosity 
fluid density 
non-dimensional time, at/r,’ 

non-dimensional stream function, ‘Y/w, 

stream function in spherical coordinates 
vorticity 
non-dimensional vorticity. wr,‘/ct. 

Subscripts 
i inner wall 
max maximum value 
0 outer wall. 

between two concentric spheres under nonsym- 
metrical thermal boundary conditions. Their work, 
however, only dealt with Ra = 500 and Pr = 1.0. 

In the present study, transient laminar natural con- 
vection between two concentric spheres for a step 
heating of inner sphere is studied numerically. The 
complete NavierStokes equations are transformed 
and expressed in terms of vorticity and stream 
function. The transformed equations, vorticity trans- 
port equation, and energy equation are then solved 
by an alternating direction implicit method (ADI), 
while the Gaussian successive over-relaxation (SOR) 
technique is utilized to solve the stream function equa- 
tion. Transient behavior of the flow and temperature 
field is displayed graphically. The influence of different 
Rayleigh numbers and radius ratios on heat transfer 
rates is also investigated. 

ANALYSIS 

A schematic diagram of the physical system to be 
investigated is shown in Fig. I. The gap between the 
spheres is filled with a viscous, incompressible New- 
tonian fluid. It is assumed that the fluid is at rest at a 
constant temperature 7’; initially. For t > 0, the inner 
sphere of radius r, is kept at a constant temperature T:, 

while the outer sphere of radius r, is still maintained at 

TL, with T: > TA. The flow is symmetrical about a 
vertical diameter parallel to the line of gravity accel- 
eration. The mathematical formulation of the prob- 
lem uses spherical coordinates with the origin at the 
center of the inner sphere. The angular coordinate is 
measured in the clockwise direction, with 0 = 0 at the 
top and 0 = 7-t at the bottom of the spheres. Further- 
more, it is assumed that (I) the fluid properties are 
constant except for the density variation with 
temperature in the buoyancy term, i.e. the Boussinesq 
approximation is valid, and (2) viscous dissipation 
and radiation effects can be neglected. 

FIG. I, Physical model and coordinate system 
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The flow field inside the annulus is conveniently 
described by the Navier-Stokes equations. Since the 
problem is two-dimensional due to the axisymmetry 
and the fact that the vorticity vector reduces to a 
scalar quantity. the stream function/vorticity for- 
mulation can be employed. Putting governing equa- 
tions into non-dimensional form yields the following : 

Vorticity transport equation : 

( 1 
=Pr V?-------- 

R2 sin’0 I 
0 

sinOg+?$!$ (1) 

Stream function equation : 

Velocities : 

1 aul 
(J=:-._.___._-- 

1 dY 
R2 sin % 8% ’ 

f/ = _____ -..- I 
R sin 8 dR (3) 

The temperature field is described by the transient 
energy conservation equation in spherical coor- 
dinates : 

where 

The initial and boundary conditions are given as 
follows : 

for r = 0 

CI=Y=~=$=T=O everywhere, (6) 

fort > 0 

atR= 1, 

Y=O, &jg, T=l; (7) 

at R = R*, 

T= 0; (8) 

at % = 0, n, 

(9) 

The local Nusselt number can be obtained from the 

gradient of the temperature at the inner and outer 
boundary from the following relationship : 

Mu<, = -R*(R*-1) 

The average Nusselt numbers are defined as : 

Nu,*,= -~Nr+O[(~)]d%. 

(10) 

(11) 

(12) 

NUMERICAL METHOD 

The vorticity transport, energy transport, and 
stream function equations together with the initial 
and boundary conditions provide a complete descrip- 
tion of the problem. Since the flow is known to be 
parabolic in time but elliptic in space, the solution for 
the problem can only be marched in time. In this 
study, the time-dependent vorticity transport and 
energy transport equations were solved by employing 
the alternating direction implicit (ADI) finite differ- 
ence technique [21], while the stream function equa- 
tion was solved by employing the Gaussian successive 
over-relaxation (SOR) technique [22, 231. The first 
and second derivatives in space were approximated 
by central difference while the time derivatives were 
approximated by forward difference. Derivatives at 
the boundaries were approximated by a three-point 
forward or backward difference. In this study, the 
accuracy of the numerical scheme was checked quite 
carefully. Essentially, we ensured that the results were 
both grid- and time-step-size-independent. A 41 x 41 
grid system and 10e4 time step were used for most 
computations in this study. 

The solution procedure was initiated by advancing 
the temperature distribution one time step through 
the solution of the energy equation. The vorticity 
equation was then solved. From the solution of the 
stream function equation the wail vorticities were 
updated. The procedure was then repeated for a new 
time step until the following pre-established con- 
vergence criterion was satisfied for all field variables : 

where the subscripts new and old indicate the present 
and previous iterative values respectively. A further 
check on the convergence of the steady-state solution 
was made by comparing the average Nusselt number 
for the inner and outer sphere : 
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Table 1. Grid test for a typical case with Pr = 0.7, Ra = I x IO’, R* = 2.0 at steady state. 
The results are compared with those of Mack and Hardee [S], Astill et al. [8] and Singh 

and Chen [12]. O* is the angular position at vortex center 

Time step 

1.0x IO1 

Grid size 

11 x21 
21 x21 
31 x31 
41 x41 
51 x51 
61 x 61 

5.0x 10 ( 31 x31 
41 x41 
51 x51 

Mack and Hardee [5] 
Astill et al. [8] 

Singh and Chan [12] 

where the superscripts n and (n+ 1) indicate the nth 
and (n + I)th time step, respectively. 

RESULTS AND DISCUSSION 

To check the validity of the numerical results, test 
calculations were performed for the following values 
of the controlling parameters : Pr = 0.7, Ra = 1000, 
and R* = 2.0. These values are convenient for com- 
parison with earlier work by Mack and Hardee [S], 
Astill et al. [8], and Singh and Chen [12]. The results 
of the test calculations are displayed in Table I. Exam- 
ining Table I shows that smaller grid sizes achieve 
better accuracy but use up more computer time. Since 
the smaller step sizes of 5 1 x 51 and 61 x 61 did not 
cause significant changes in the magnitude of the aver- 
age Nusselt number for the test cases, a uniform grid 
system of 41 x 41 was chosen for the calculation of all 
cases in this study. Numerical test calculations were 

also performed for different time steps. It was found 
that a time step of 1O-4 would give a time-independent 
solution. 

In this work, calculations were carried out for 
radius ratios of 1.2, 1.5, and 2.0 at Prandtl numbers 
of 0.7. Rayleigh numbers were varied from the con- 
duction dominated mode into the laminar free con- 
vection dominated region. The maximum Rayleigh 
number was limited by numerical convergence, which 
in turn was dependent on the radius ratio. The limits 
of the Rayleigh number for various radius ratios are 

given in Table 2. The results for steady Nusselt num- 

ber Nu* and Y’,,, are also displayed in Table 3. 
Figure 2 presents a series of streamline con- 

figurations, isotherms, and velocity vectors for radius 
ratio of 2.0, Prandtl number of 0.7. and Rayleigh 

Table 2. Rayleigh number ranges 
for various radius ratios 

R* Rayleigh number range 

1.2 1.0 x 102p3.0 x lOh 
1.5 1.0x lo’~l.ox lOh 
2.0 1.0x lO’~5.OX 10’ 

Nu* <nJh 
Y n* CPU time 

-____ 

1.143 3.450 81 
1.107 3.256 78 11 m 54.78 s 
1.101 3.218 78 33 m 37.10 s 
1.099 3.209 81 56m21.45s 
1.099 3.203 79.2 2h26m21.23s 
1.099 3.199 81 3 h 40 m 03.21 s 

1.106 3.218 78 57 m 23.59 s 
I .099 3.209 Xl 1 h40m 11.74s 
1.099 3.203 79.2 3 h 59 m 54.86 s 

1.120 3.210 77 
1.120 3.490 79 
l.IOI 

number of 10’ ; Fig. 3 presents a corresponding series 
for Rayleigh number of IO’. This series of results 
is designed to show the individual influence of the 
Rayleigh number of the flow field. In Fig. 2, the 
streamlines and isotherms are displayed on the left- 
hand side and the velocity fields are displayed on the 
right-hand side. For the conditions selected in Fig. 
2-radius ratio of 2.0, Rayleigh number of 1000, and 
Prandtl number of 0.7-the maximum value of stream 
function Y’,,, = 3.209 lies at 0 = 81 from the upper 
vertical line of symmetry and at about the midgap 
position. The fluid in the close vicinity of the inner 
sphere has a lower density than that near the outer 
sphere. Thus, the fluid near the surface of the inner 
sphere moves upward while the relatively heavy fluid 
near the outer sphere moves downward. As the fluid 
moves downward, it loses energy and eventually for- 
ces the separation of the thermal boundary layer along 
the outer sphere. The heavy fluid then enters the ther- 
mal boundary layer of the inner sphere and completes 
the recirculation pattern. At this Rayleigh number, 
conduction was the dominant mode of heat transfer. 
The radial and angular components of the velocity 
field are displayed on the right-hand side. The velocity 

Table 3. Average Nusselt number Nu* and Y’,,, as functions 
of Ra and R*. B* is the angular position at vortex center 

R* RU NU* Ylm o* 
- 

1.2 1.0x 10’ 1 .ooo 0.023 90 
1.0x IO4 1 .oo I 0.223 90 
1.0 x 10” 1.008 2.273 90 
1.0x lOh 1.361 20.050 81 

1.5 1.0x 10’ 1.001 0.004 90 
1.0x IO’ 1.001 0.388 90 
1.0 x 10” 1.073 3.777 85.5 
1.0x 10’ 1.917 22.530 76.5 
1.0x IO” 3.708 47.090 58.5 

2.0 1.0x 10’ 1.001 0.335 90 
1.0x 10’ I.099 3.209 81 
1.0x IO4 1.973 17.280 67.5 
1.0x IO5 3.489 36.530 54 
5.0 x 105 5.378 53.420 49.5 
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t =0.2 

FIG. 2. Streamlines, isotherms, and velocity distributions for Pr = 0.7, Ra = 1.0 x IO’, R* = 2.0 at different 
time steps. Y,,, = 3.209. 
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FIG. 3. Streamlines, isotherms, and velocity distributions for Pr = 0.7, Ra = 1.0 x f05, R* = 2.Oat different 
time steps. Y,,,,, = 36.530. 
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vectors were normalized by the maximum local vel- 
ocity in the flow field and vectors with values of less 
than 0.01 are not shown in Fig. 2. Both these results 

and the heat-transfer results are in excellent agreement 
with the findings of Mack and Hardee [5] for this case. 
The center of the crescent-shaped eddy stayed close 
to midgap as variables were changed, but moved into 
the upper hemisphere as the Rayleigh number 
increased. This is apparent when we compare the 
radius ratio of 2.0 in Fig. 2, where the Rayleigh num- 
ber is lo’, with that in Fig. 3, where the Rayleigh 
number is 105. For the case of Ra = IO’, laminar 
convection was the dominant mode of heat transfer 
and the bottom region was essentially stagnant with 
low velocities. However, in the top half of the sphere, 
the fluid was recirculated, making the outer layer 
warmer. The transport of hot fluid to the outer sphere 
is also depicted by the isotherms in Figs. 2 and 3. The 
isotherms exhibit an inversion, and the streamlines are 
crescent eddy-shaped, as observed by Bishop et al. [2]. 

Figures 4 and 5 show the transient streamlines, 
isotherms, and velocity distributions for various 
combinations of Pr = 0.7; Ra = IO3 and 10’; and 
R* = 1.5. When compared with Figs. 2 and 3, Figs. 4 
and 5 show that at fixed Rayleigh number, as the 
radius ratio increases, the vortex center (the position 
with the maximum value of the stream function) rises 
to the upper portion and dips near the 8 = 90” pos- 
ition when the radius is reduced. For a fixed Rayleigh 
number, the dominant mode of heat transfer will 
change with a different radius ratio. When the radius 
ratio is decreased, the dominant mode of heat transfer 
will be conduction. This result is apparent from com- 
paring Figs. 2 and 4 or Figs. 3 and 5. 

Figure 6 demonstrates a set of typical steady 
temperature distributions for Pr = 0.7, R* = 2.0 at 
Ra = IO’, 105, and 5 x 105. Examining Fig. 6, we see 
that at any radial position, the temperature dis- 
tribution increases with decreasing 0. For the case 
where Ra = IO’, the temperature distribution is 
almost the same as in the pure conduction case. How- 
ever, at Ra = 10’ and Ra = 5 x IO’, the natural con- 
vection effect is dominant instead of conduction. In 
the axis of vertical symmetry at 0 = O”, where there 
is no angular velocity, the temperature continues to 
decrease slowly in the core along the radial direction 
until the outer boundary layer is reached, where the 
temperature falls off sharply once again. At 36”, a 
temperature inversion appears in the middle of the 
annulus. Such an inversion is also seen at other angu- 
lar positions. The fluid in the bottom portion of the 
annulus is relatively stagnant and stays colder. As 
expected, the maximum temperature always occurs at 
the top of the inner sphere for all Rayleigh numbers 
and diameter ratios. From the difference in tem- 
perature distribution between natural convection and 
conduction, we may calculate the effects of natural 
convection. In all temperature distribution figures, we 
also find that the difference in temperature between 
the profile for 90” and 180” is small, which implies 

that local heat transfer rates at both inner and outer 
spheres should be independent of 0. 

The transient behavior of the tangential velocity at 

0 = 90” for Pr = 0.7, R* = 2.0 with Ra = lo’, 105, 
and 5 x 105, respectively, is shown in Fig. 7. Exam- 
ining this figure we see that the velocity gradients near 
the inner and outer spheres increase as the Rayleigh 
number increases from lo3 to 5 x 10’. As expected, 
the upward and downward flows are still balanced, 
due to the conservation of mass. For Ra = 5 x IO’, a 
two-layer flow structure is observed at t > 0.04. The 
flow formation processes of this particular flow pat- 

tern are due to viscous shearing. 
The local and average Nusselt numbers for the inner 

and outer spheres were defined in equations (IO)-( 12). 
Since an average Nusselt number of unity represents 
conduction heat transfer, an average Nusselt number 
larger than unity indicates the enhancement of heat 
transfer by free convection. The variation of local 
Nusselt numbers on the inner sphere and outer sphere 
at Ra = lo’, Pr = 0.7 and R* = 2.0 is shown in Fig. 
8. The results of the present analysis are compared 
with those of Mack and Hardee [5] and Astill et al. 
[8]. The comparison indicates an excellent agreement 
except near the neighborhood of top region of the 
annuli. In this region, the present results show a slight 
turn toward the conduction value. The two curves 
intersect at approximately Nu, = NM, = 1.099 and 
0 = 81”, which coincidentally is the center of the 
vortex. The transient variation of local Nusselt num- 
bers for Pr = 0.7, R* = 2.0, and Ra = lo”, 105, and 
5 x 105, respectively, are shown in Fig. 9. Examining 
Fig. 9, we see that the local Nusselt number on the 
outer surface has a peak near the top of the annulus. 
The peak value increases with an increase in Rayleigh 
number. 

The relations of average Nusselt numbers on both 
inner and outer surfaces vs dimensionless time are 
presented in Fig. 10. In this figure, the solid line rep- 
resents the inner surface, while the dashed line rep- 
resents the average Nusselt number for the outer sur- 
face. These average Nusselt numbers for the inner and 
outer spheres Nu,* and NM,* are defined as in equation 
(12). As time increases, both NUT and NM,* approach 
their steady-state values and should be equal, based 
on a simple energy balance. In Fig. IO(a), both NM: 
and NM,* approach unity for Ra = 1 x 10’ as t 
increases. This means that convection is nearly nil at 
R* = 2.0 and Ra = 1 x 103. As the Rayleigh number 
increases, the steady state average Nusselt number 
increases. Figures 10(b) and (c) show the same trend 
for R* = 1.5 and 1.2, respectively. Average Nusselt 
number NM* vs Rayleigh number is plotted in Fig. 1 I 
for a diameter ratio R* of 2.0. This figure compares 
our results with results obtained using the equations 
recommended by Bishop et al. [2] and Scanlan et al. 
[3], which were based on experimetal results, and the 
numerical results of Astill [8] and Singh and Chen 
[ 121. The comparison indicates an excellent agreement 
between these results. 
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t =0.04 

t,=0.2024 

FIG. 4. Streamlines, isotherms, and velocity distributions for Pr = 0.7, Ra = I .O x 102. R* = 1.5 at different 
time steps. Y,na, = 0.388. 
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t =0,04 

t ,=0.1568 

FIG. 5. Streamlines, isotherms, and velocity distributions for Pr = 0.7, Ra = 1.0 x IO’, R* = 1.5 at different 
time steps. Y,,,,, = 22.530. 
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CONCLUSIONS 

The present work investigates numerically the tran- 
sient laminar natural convection heat transfer of an 
incompressible viscous fluid contained between two 
concentric isothermal spheres. The transient behavior 
of the flow field and heat transfer is shown graphically. 
The present results of locai and average Nusselt num- 
bers are in good agreement with the results of earlier 
researchers [2. 3. 5. 8. 121. Our major results may be 
summarized as follows: (I) at fixed radius ratio, the 
average Nusselt number increases with increases in 
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FIG. 8. Variation of local Nusselt numbers on the inner and outer surface at Pr = 0.7, Ra = I.0 x IO’ and 
R* = 2.0. 
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e 
FIG. 9. Transient variation of local Nusselt numbers for 
Pr = 0.7. R* = 2.0 : (a) Ra = 1.0 x 10’ ; (b) Ra = 1 .O x 10' ; 

(c) Ra = 5.0 x 10’ 

(4 

Ra=5.0x106 

Ra= 1.0 x10 6 
- c ,_ -- --- 

I I 
0 0.01 o.ov. 1108 0.01 

T 

FIG. 10. Temporal variations of the average Nusselt numbers 
for Pr = 0.7 : (a) R* = 2.0 ; (b) R* = 1.5 ; (c) R* = 1.2. 
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FIG. 11. Steady average Nusselt number as a function of 
Rayleigh number for Pr = 0.7, and R* = 2.0. 

Rayleigh number; (2) at fixed Rayleigh number, the 
average Nusselt number increases with increasing 
radius ratio ; (3) the center of the main vortex (where 

the value of the stream function is maximum) moves 
to the upper location with increasing Rayleigh number 

and radius ratio. 
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